Outer Approximation of the Spectrum of a Fractal Laplacian

نویسندگان

  • Tyrus Berry
  • Steven M. Heilman
  • Robert S. Strichartz
چکیده

We present a new method to approximate the Neumann spectrum of a Laplacian on a fractal K in the plane as a renormalized limit of the Neumann spectra of the standard Laplacian on a sequence of domains that approximate K from the outside. The method allows a numerical approximation of eigenvalues and eigenfunctions for lower portions of the spectrum. We present experimental evidence that the method works by looking at examples where the spectrum of the fractal Laplacian is known (the unit interval and the Sierpinski Gasket (SG)). We also present a speculative description of the spectrum on the standard Sierpinski carpet (SC), where existence of a self-similar Laplacian is known, and also on nonsymmetric and random carpets and the octagasket, where existence of a self-similar Laplacian is not known. At present we have no explanation as to why the method should work. Nevertheless, we are able to prove some new results about the structure of the spectrum involving “miniaturization” of eigenfunctions that we discovered by examining the experimental results obtained using our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laplacian Energy of a Fuzzy Graph

A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...

متن کامل

Vibration Spectra of the m-Tree Fractal

We introduce a family of post-critically finite fractal trees indexed by the number of branches they possess. Then we produce a Laplacian operator on graph approximations to these fractals and use spectral decimation to describe the spectrum of the Laplacian on these trees. Lastly we consider the behavior of the spectrum as the number of branches increases. MCS: 28A80, 34B45, 15A18, 60J45, 94C9...

متن کامل

Normalized laplacian spectrum of two new types of join graphs

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

متن کامل

A Critique on Power Spectrum – Area Fractal Method for Geochemical Anomaly Mapping

Power spectrum – area fractal (S-A fractal) method has been frequently applied for geochemical anomaly mapping. Some researchers have performed this method for separation of geochemical anomaly, background and noise and have delineated their distribution maps. In this research, surface geochemical data of Zafarghand Cu-Mo mineralization area have been utilized and some defects of S-A fractal me...

متن کامل

Optimum decoder for multiplicative spread spectrum image watermarking with Laplacian modeling

This paper investigates the multiplicative spread spectrum watermarking method for the image. The information bit is spreaded into middle-frequency Discrete Cosine Transform (DCT) coefficients of each block of an image using a generated pseudo-random sequence. Unlike the conventional signal modeling, we suppose that both signal and noise are distributed with Laplacian distribution, because the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental Mathematics

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2009